

Title: The longitudinal effects of a physical activity programme on the physical fitness and disability of back pain patients: a service evaluation

Author(s): Bloxham, Saul, Layden, Joseph, Jane, Ben, Peers, Charles and Scragg, Slafka

Copyright, publisher and additional information: "The final publication is available at IOS Press through http://dx.doi.org/10.3233/BMR-170856" (for example "The final publication is available at IOS Press through http://dx.doi.org/10.3233/JAD-151075)"

DOI: 10.3233/BMR-170856

Reference: Bloxham, Saul Robert et al. 'The Longitudinal Effects of a Physical Activity Programme on the Physical Fitness and Disability of Back Pain Patients: Service Evaluation'. 1 Jan. 2020: 7 – 13.

Title: The longitudinal effects of a physical activity programme on the physical fitness and disability of back pain patients: a service evaluation

Authors:

Saul Robert Bloxham PhD - University of St Mark and St John

Joe Layden, PhD - University of St Mark and St John

Ben Jane, BSc - University of St Mark and St John

Charles Peers, MOst - Plymouth Community Back Pain Service, Stoke Surgery, NHS Plymouth

Slafka Scragg, - Mustard Tree Macmillan Centre, Plymouth Hospital Trust

Corresponding author:

Saul Robert Bloxham PhD

University of St Mark and St John

Derriford Road

Plymouth

PL68BH

UK

Email: sbloxham@marjon.ac.uk

Tel +44 01752 636700 ex6526

ABSTRACT

OBJECTIVE: To evaluate the longitudinal effect of a group physical activity service to help patients self-manage un-resolving back pain.

BACKGROUND: Back pain is one of the most common and costly conditions. Large scale trials have demonstrated a role for less traditional treatment including exercise, yet the long term effects of patient centred, group physical activity programmes remains unclear.

METHODS: One hundred and eighty one un-resolving back pain patients (aged 53 \pm 17 years) completed a 6x2h physical activity programme. All activities were relevant to activities of daily living and incorporated activities to develop aerobic fitness, flexibility, core activation, and muscular strength & endurance. Dietary advice, home diaries and pedometers were provided. **RESULTS:** Measures of back pain, aerobic fitness, muscular endurance and body composition showed significant (p < 0.05) pre-post intervention improvements. Disability rating decreased by 19% alongside improvements in aerobic fitness (15%), back extension (36%) back flexion (16%) and grip strength (5%). Six month follow up identified (p < 0.05) reductions in body fat (6.5%) whilst aerobic fitness, disability rating and muscular strength & endurance remained stable. **CONCLUSION:** Group physical activity programmes could contribute to the self-management of back pain, enabling sustained improvements in fitness, physical activity and body fatness.

KEYWORDS

Physical Activity, Back Pain, Disability, Self-Management, Group Exercise, Fitness

The longitudinal effects of a lifestyle physical activity programme on the physical fitness and disability of back pain patients: a service evaluation

Introduction

Back pain is a major health condition in Western countries and is associated with high levels of medical expenditure [1,2], work absence [3–5] and is the most common musculoskeletal condition [6–8]. Between 60-80% of adults will experience back pain [9–11], and 16% of adults in the United Kingdom (UK) consult their general practitioner every year [12]. The most appropriate intervention to support patients with back pain remains unknown [13] which can result in patients depending on pain medication, experience psychological deterioration and have low levels of physical inactivity through fear avoidance [14]. Preventing patients entering the 'revolving door' of health professionals requires new approaches to back pain treatment and studies have shown major advantages of group exercise therapy [15], that is more cost effective than individual treatment [16]. Nevertheless, few papers report on how these findings translate to actual service provision [39].

Long periods of inactivity is detrimental to recovery and medical guidelines recommend that patients should remain as active as possible [17,18]. Different types of exercise have been explored including low-moderate intensity aerobic exercise [19,20], high intensity aerobic exercise [21,22], core stabilisation and muscular strength exercises [23–27] and flexibility programmes [28–31].

It is increasingly apparent that multi-modal physical activity to increase aerobic fitness and muscular strength that relates to activities of daily living (ADL), can improve back pain. To date, the majority of research into exercise therapy has centred on delivering monodisciplinary interventions that have focused on improving specific outcomes such as strength of the lumbar stabilising muscles [32], functional range of motion of the lumbar spine [33] or aerobic fitness

[22,34] yet the most effective form of exercise remains unknown [33]. As 85% of back pain cases are non-specific [35] with multidimensional causes of pain, varying greatly between patients [36], a holistic approach to exercise therapy warrants further consideration.

Previous studies into back pain have focused on specific outcomes, [22,34,37], yet few appear to have assessed the effectiveness of group based exercise that incorporate a range of physical activity modalities, including dietary advice in combination with behaviour change strategies to promote self-management and patient empowerment [38]. At present, there is a paucity of research that explores the effectiveness of holistically orientated, multidisciplinary exercise therapy services for the treatment of back pain. This paper documents the findings of a local community back pain service designed to adopt a holistic approach to the management of non-specific back pain. The specific aims are to:

- To investigate the effectiveness of a group lifestyle physical activity service on;
 physical activity, fitness and disability of back pain patients.
- ii. To examine the longevity of the service six-months after completion.

METHOD

Participants

Patients were medically screened and referred from their GP to the sub-acute back pain service delivered by local Osteopaths in conjunction with cognitive behavioural therapy and exercise. These data are a random sample of one hundred and eighty-one participants (aged 53 ± 17 years) that were deemed eligible to attend the physical activity programme as recommended by the Osteopath. Inclusion criteria were patients identified with non-specific or un-resolving back pain with no contraindications to-light to-moderate physical activity and a willingness to try exercise. Given the community and holistic focus of the service, no other exclusion criteria were imposed. As this programme was part of a new

community back pain service for the locality and not funded research, a pre-post-post design was adopted to help evaluate the effectiveness of the service, given that a control group was not possible. To evaluate the exercise component of the service, local ethical clearance was granted and patients had the right to withdraw from the programme at any time, without penalty.

Programme content

Patients completed a six session, multi-component, group (n=10) physical activity programme lasting two hours per week. Each session provided the patients with a different practical and educational focus including activities designed to develop safe and effective aerobic fitness, flexibility, core activation, stability, and muscular strength and endurance. All activities were designed to be relevant to activities of daily living and functional movement. Dietary advice, home diaries and pedometers were also provided to record and analyse lifestyle activities completed at home. Patients were provided with an information booklet to support activities completed during the sessions and extend patient knowledge of exercise, nutrition and principles of training. Patients were encouraged to set and review their own goals each week to promote self-management and patient empowerment. Physical activity opportunities were provided across formal (gym, swimming, outdoor activities, orienteering, sports) and informal environments (walking, lifting, cleaning, sitting, driving, home) so patients could maintain a physically active lifestyle after the programme had finished. Patients were able to attend and share the sessions with their carers, children or spouse to promote a physically activity culture within both the family and social environments. Comprehensive details on the programme content and design are included in table 1 and have been published elsewhere [39]

		Table 1: Summary of programme content							
	Theme	Activity 1	Activity 2	Activity 3	Activity 4	Activity 5	Activity 6	Activity 7	Activity 8
Week One	Introduction & Baseline	Introduction to the programme; Administration	Core activation & posture; chair based warm-up /mobility	Chester step test or alternative & education	Body composition assessment & education	Core flexion extension endurance & education	Flexibility and cool down & education	Individualized exercise therapy and rehabilitation Personalised goal setting	Social drinks tea/coffee
Week Two	Motion patterns and core activation	Small group discussion of daily diary, pedometers.	Chair based warm-up; sit to stands; calf raises; balance work; glut activation	Back saving motion patterns; hip hinge in context of daily tasks; explore neutral spine	Outside walk focusing on technique, pace, core activation and posture	Introduction to Nordic Walking focusing on co- ordination	Core strengthening; introduction to bird- dog, back saver sit up and side-plank	Individualized exercise therapy and rehabilitation Personalised goal setting	Social drinks tea/coffee
Week Three	Aerobic Fitness	Small group discussion of daily diary, pedometers. Larger group sharing as appropriate	Relaxation techniques: Lifestyle integration of learnt skills	Induction to fitness gym and aerobic equipment & education	Explore aerobic equipment; 5-8 minutes on up to 4 different ergometers	Progressions of bird- dog, back saver sit up and side-plank; glut max and med strengthening	Flexibility of major muscle groups; Review of achievements since starting the programme	Individualized exercise therapy and rehabilitation Personalised goal setting	Social drinks tea/coffee
Week Four	Muscular Strength and Endurance	Small group discussion of daily diary, pedometers. Larger group sharing as appropriate. Larger group sharing as appropriate	Introduction to resistance bands for home use	Nutrition and healthy food discussion. Food diary task	Aerobic warm up – patient led based on learnt exercise principles & increased self- efficacy	Introduction to resistance equipment in the fitness gym & education	Patient led core and flexibility exercises. Trouble shooting and adaptations	Individualized exercise therapy and rehabilitation Personalised goal setting	Social drinks tea/coffee
Week Five	Free flow: Water, land & Exergaming	Small group discussion of daily diary, pedometers. Larger group sharing as appropriate	Analysis of food diaries and group comments / observations	Aqua aerobics or land based options: Exercise gaming; aerobic exercise; Pilates; Nordic walking; Resistance exercise; fitness suite; flexibility; Floor based exercises (bird-dog, back saver sit up and side-plank; glut max and med strengthening)		Discussion around exit programme options. Barriers to exercise	Individualized exercise therapy and rehabilitation Personalised goal setting.	Social drinks tea/coffee	
Week Six	Summary & retest	Small group discussion of daily diary, pedometers. Larger group sharing as appropriate	Retest baselines measur Chester step test; Body composition assess Core flexion extension; Questionnaires;	rehabilitation sessment;			therapy and	Café Group discussion Programme reflections Finish	

Measures

All measurement activities were also used as an educational opportunity for the patients to learn about their physical capability and better understand their back pain. Anthropometric measures of body mass (Weight Counting Scale, Seca Limited, UK), stature (Leicester Height Measure, Seca Limited, UK), body fat mass and lean muscle mass (Tanita MC-180) were obtained. Aerobic capacity was measured using the Chester Step Test protocol (Assist Creative Resources, UK) during which heart rate (HR) and ratings of perceived exertion (RPE) were recoded for each stage. The test was completed when either the patient reached 80% of HRmax or reaching an RPE >13. Muscular strength was measured using a hand grip dynamometer – grip A (Takei Physical Fitness Test, Japan). Back flexion and extension muscular endurance was measured with patients instructed to hold a specified position for as long as possible without pain, or until the test was terminated at 120s. Pedometers were used to assess physical activity and disability was measured using the Modified Oswestry Low Back Pain Disability Questionnaire (MODQ). All measures were taken on the first session and then repeated six weeks later. After the programme had completed, participants were later invited for a follow-up assessment at sixmonths.

Treatment of Data

Data were inputted and stored in a Microsoft Office Excel 2007 Spreadsheet (Microsoft Corporation, USA). Statistical software package SPSS (version 22.0, SPSS, Chicago, Illinois) was used for all statistical analyses. Parametric pre-post-post results were statistically compared using one-way repeated measures analyses of variance (ANOVA) with Bonferroni adjustment. Where differences were indicated, post hoc pairwise comparisons were used to compare means. Associations between data sets were examined using Pearson Product Moment Correlations. Probability values of <0.05 were considered significant and all tests were two sided. All results are expressed as means (SD) unless otherwise stated.

RESULTS

Repeated measures ANOVA indicated that measures of body mass, body fat percentage (%), lean mass and BMI were not significantly (p>0.05) different between pre-post programme measurement occasions. At 6-month follow-up, small (-3.8%) but significant (p<0.05) reduction in participants body fat % were identified.

Table 2: Body composition

Measure	Pre-Programme (a)	Post-Programme (b)	6 month (c)	% Change
	(n-181)	(n = 177)	(n=53)	(Pre - 6 month)
Total Mass (kg)	84.2 (21.5)	83.4 (22.0)	83.6 (19.9)	-0.7
Body Fat Percentage (%)	34.2 (8.3)	33.8 (8.7) °	32.9 (8.7) b	-3.8
Lean Mass (kg)	54.3 (12.7)	54.3 (11.7)	54.8 (11.1)	+0.9
BMI	30.5 (7.0)	30.3 (7.0) a	30.4 (6.9)	-0.7

^{a,b,c} Denotes statistical significance p<0.05

Repeated measures ANOVA revealed significant (p<0.05) improvements in aerobic fitness (15%) between pre-post programme measurement occasions (27, (15.3) mL·kg⁻¹·min⁻¹ to 31.1, (14.2) mL·kg⁻¹·min⁻¹) which were maintained at six month follow-up (32.6 (12.5) mL·kg⁻¹·min⁻¹). Measures of muscular strength (grip strength) and muscular endurance (back flexion and extension) revealed a similar pattern with significant (p<0.05) improvements in pre-post programme measures that were maintained but not improved (p>0.05) at six-month follow up, compared to post-programme values (table 3).

Table 3: Performance measures of physical fitness and disability

Measure	Pre Programme (n = 181)	Post-Programme (n=177)	6 month (n=53)	% Change (Pre-6mth)
Back Extension (s)	35.9 (38.7)	49.3 (40.9)*	50.2 (47.8)	40
Back Flexion (s)	61.4 (43.1)	71.9 (41.0)*	70.4 (48.3)	15
Grip Strength – Left (kg)	29.9 (11.4)	31.5 (12.1) *	30.3 (11.0)	1.3
Grip Strength – Right (kg)	31.4 (11.5)	32.4 (11.9)	31.9 (11.0)	1.6
Predicted Aerobic Fitness (mL·kg ·min)	27.5 (15.3)	31.1 (14.5) *	32.6 (12.5)	13
Pedometer Count	4570 (2403)	7163 (9825)*	n/a	57
Oswestry Disability Rating	30.9 (19.3)	25.4 (19.1) *	27.6 (19.6)	-11

^{*} Denotes significantly different from pre-programme p<0.05

Analysis of the MODQ revealed significant (P<0.05) pre-post programme improvements (19%) in disability rating (30.9(19.3) to 25.4 (19.1)) that reached clinical significance [40]. The moderate classification remained unchanged (p>0.05) at the post six-months measurement occasion (27.6 (19.6)). Paired samples t-test revealed that pedometer assessed physical activity levels improved (p<0.05) pre-post programme from 4570 (2403) to 7163 (9825) by 57%, although no data were available for follow-up analysis as few patients continued using the devices.

There were no meaningful relationships identified between variables following correlation analysis.

DISCUSSION

The main finding of this study was that six-weeks of group physical activity was sufficient to provide significant improvements in aerobic fitness (15%), physical activity (57%), muscular strength and endurance (5%) and disability (-11%) of back pain patients. Moreover, six months after the programme had finished these physical and perceptual benefits had not diminished, and significant reductions in body fat % (-3.9) had begun to emerge.

Evidence supporting 8-12 weeks aerobic exercise as a treatment for back pain has been documented [22,34,37]. Similarly, our intervention emphasised aerobic exercise, but in contrast to the other studies, was less tightly controlled to reflect our objective to encourage self-management and behaviour change. Instead, our approach focused on strategies to encourage patients to better self-regulate physical activity utilising principles learnt during the programme to optimise volume and intensity according to pain, fatigue and their own environmental constraints. Patients were issued pedometers to support self-monitoring of home based activity and review their own weekly goals. The finding that patients' physical fitness improvements remained six-months post programme was particularly welcome, supporting the programme's holistic and self-mediated approach to exercise therapy. Not only was our programme less prescribed than others [22,34,37] it was also significantly (50%) shorter. Kuukkanen and Mälkiä [29] and Chatzitheodorou et al. [22] lasted twelve weeks, Oldervoll et al. [34] lasted fifteen weeks and Hurwitz et al. [37] lasted eighteen months. Our programme was only six weeks thereby demonstrating potential cost savings for health service commissioners.

The MODQ has been shown to be a reliable measure when detecting changes in disability [41]. Our MODQ results (Table 3) suggest that the programme was effective at decreasing the disability of the group. Although the disability rating remained in the moderate classification, a significant 19% decrease in disability is recognised as clinically significant [40]. Programmes that have adopted a single exercise therapy such as core stabilisation [23,25–27] muscular strength [24] and aerobic fitness [22,34,37], have reported significant reductions in back pain with corresponding decreases ranging from 43.7% - 76.8%. Our improvements were more modest (19%), perhaps reflecting the holistic nature of the programme that focused on physical activities pertaining to ADL.

The finding that none of the measures in our programme were correlated to decreases in disability is consistent with others that have focused on aerobic fitness [42] and flexibility [29]. In contrast, Van der velde & Mireau [43], reported improvements in aerobic capacity were associated with greater decreases in back pain (p<0.05). Discrepancies are difficult to interpret, yet the nature of back pain reflects multi-factorial causation that has yet to be identified in most cases and it follows that no single treatment modality it likely to be successful. Our multi-component approach that encourages

patients to experience a range of physical activities for which they can integrate into daily life, is better able to address patient heterogeneity and personal circumstance. This person-centred approach, encourages sustainable self-management as reflected by patients reporting functional and physiological improvements six-months after the programme had completed.

This paper is novel given that it examines a new approach to exercise therapy, as adopted by a community back pain service from which outcomes are not routinely reported. However, the lack of control group requires caution when interpreting the main findings. The tests included in the programme were used as an educational opportunity for patients to learn about improving their back pain management, but this may have introduced further measurement bias. Similarly, only 30% of those who completed the initial six-week programme returned for the six-month follow-up, explained in part by the opportunity being made available only after the six-week programme had finished. Nevertheless, there is increasing demand on primary and secondary care for musculoskeletal conditions that can be better self-managed. Our approach to group physical activity in promoting ADL, rather than prescriptive exercise, shows promise as a sustainable and cost effective conservative option to help patients self-manage back pain.

ACKNOWLEDGEMENTS

The authors would like to thank all those who contributed to the development and delivery of the programme, including the wider multi-disciplinary team of Osteopaths and cognitive behavioural therapists, students and patients.

REFERENCES

- [1] Maniadakis N, Gray A. The economic burden of back pain in the UK. Pain 2000;84:95–103.
- [2] Hong J, Reed C, Novick D, Happich M. Costs associated with treatment of chronic low back pain: an analysis of the UK General Practice Research Database. Spine (Phila Pa 1976) 2013;38:75–82. doi:10.1097/BRS.0b013e318276450f.
- [3] Ricci JA, Stewart WF, Chee E, Leotta C, Foley K, Hochberg MC. Back pain exacerbations and lost productive time costs in United States workers. Spine (Phila Pa 1976) 2006;31:3052–60. doi:10.1097/01.brs.0000249521.61813.aa.
- [4] van Tulder M, Malmivaara A, Esmail R, Koes B. Exercise therapy for low back pain: a systematic review within the framework of the cochrane collaboration back review group. Spine (Phila Pa 1976) 2000;25:2784–96.
- [5] Wynne-Jones G, Cowen J, Jordan JL, Uthman O, Main CJ, Glozier N, et al. Absence from work and return to work in people with back pain: a systematic review and meta-analysis. Occup Environ Med 2014;71:448–56. doi:10.1136/oemed-2013-101571.
- [6] Chen S-M, Alexander R, Lo SK, Cook J. Effects of Functional Fascial Taping on pain and function in patients with non-specific low back pain: a pilot randomized controlled trial. Clin Rehabil 2012;26:924–33. doi:10.1177/0269215512441484.
- [7] Ebadi S, Ansari NN, Naghdi S, Fallah E, Barzi DM, Jalaei S, et al. A study of therapeutic ultrasound and exercise treatment for muscle fatigue in patients with chronic non specific low back pain: a preliminary report. J Back Musculoskelet Rehabil 2013;26:221–6. doi:10.3233/BMR-130380.
- [8] Hancock MJ, Maher CG, Latimer J. Spinal manipulative therapy for acute low back pain: a clinical perspective. J Man Manip Ther 2008;16:198–203. doi:10.1179/106698108790818279.

- [9] Kolber MJ BK. Lumbar Stabilization: An evidence-based approach for the athlete with low back pain. Strength Cond 2007;29:26–37.
- [10] Lara-Palomo IC, Aguilar-Ferrándiz ME, Matarán-Peñarrocha GA, Saavedra-Hernández M, Granero-Molina J, Fernández-Sola C, et al. Short-term effects of interferential current electromassage in adults with chronic non-specific low back pain: a randomized controlled trial. Clin Rehabil 2013;27:439–49. doi:10.1177/0269215512460780.
- [11] Waddell G, Burton AK. Occupational health guidelines for the management of low back pain at work: evidence review. Occup Med (Lond) 2001;51:124–35.
- [12] Thomas KJ, MacPherson H, Thorpe L, Brazier J, Fitter M, Campbell MJ, et al. Randomised controlled trial of a short course of traditional acupuncture compared with usual care for persistent non-specific low back pain. BMJ 2006;333:623. doi:10.1136/bmj.38878.907361.7C.
- [13] Mayer J, Mooney V, Dagenais S. Evidence-informed management of chronic low back pain with lumbar extensor strengthening exercises. Spine J 2008;8:96–113.

 doi:10.1016/j.spinee.2007.09.008.
- [14] Bunzli S, Smith A, Schütze R, O'Sullivan P. Beliefs underlying pain-related fear and how they evolve: a qualitative investigation in people with chronic back pain and high pain-related fear.

 BMJ Open 2015;5:e008847. doi:10.1136/bmjopen-2015-008847.
- [15] UK BEAM Trial Team. United Kingdom back pain exercise and manipulation (UK BEAM) randomised trial: effectiveness of physical treatments for back pain in primary care. BMJ 2004;329:1377. doi:10.1136/bmj.38282.669225.AE.
- [16] Carr JL, Klaber Moffett JA, Howarth E, Richmond SJ, Torgerson DJ, Jackson DA, et al. A randomized trial comparing a group exercise programme for back pain patients with individual physiotherapy in a severely deprived area. Disabil Rehabil 2005;27:929–37.

- doi:10.1080/09638280500030639.
- [17] NHS. Back pain NHS Choices 2013.
- [18] Bekkering G, Hendriks H, Koes B, Oostendorp R, Ostelo R, Thomassen J, et al. Dutch Physiotherapy Guidelines for Low Back Pain. Physiotherapy 2003;89:82–96. doi:10.1016/S0031-9406(05)60579-2.
- [19] Chan CW, Mok NW, Yeung EW. Aerobic exercise training in addition to conventional physiotherapy for chronic low back pain: a randomized controlled trial. Arch Phys Med Rehabil 2011;92:1681–5. doi:10.1016/j.apmr.2011.05.003.
- [20] Shnayderman I, Katz-Leurer M. An aerobic walking programme versus muscle strengthening programme for chronic low back pain: a randomized controlled trial. Clin Rehabil 2013;27:207–14. doi:10.1177/0269215512453353.
- [21] Chatzitheodorou D, Mavromoustakos S, Milioti S. The effect of exercise on adrenocortical responsiveness of patients with chronic low back pain, controlled for psychological strain. Clin Rehabil 2008;22:319–28. doi:10.1177/0269215507079858.
- [22] Chatzitheodorou D, Kabitsis C, Malliou P, Mougios V. A pilot study of the effects of high-intensity aerobic exercise versus passive interventions on pain, disability, psychological strain, and serum cortisol concentrations in people with chronic low back pain. Phys Ther 2007;87:304–12. doi:10.2522/ptj.20060080.
- [23] Inani SB, Selkar SP. Effect of core stabilization exercises versus conventional exercises on pain and functional status in patients with non-specific low back pain: a randomized clinical trial. J

 Back Musculoskelet Rehabil 2013;26:37–43. doi:10.3233/BMR-2012-0348.
- [24] Kim J-D, Oh H-W, Lee J-H, Cha J-Y, Ko I-G, Jee Y-S. The effect of inversion traction on pain sensation, lumbar flexibility and trunk muscles strength in patients with chronic low back

- pain. Isokinet Exerc Sci 2013;21:237-46. doi:10.3233/IES-130506.
- [25] Šarabon N, Palma P, Vengust R, Strojnik V. Effects of Trunk Functional Stability Training in Subjects Suffering From Chronic Low Back Pain: a Pilot Study. / Učinkovitost Senzorično-Motorične Stabilizacijske Vadbe Trupa Pri Pacientih S Kronično Bolečino V Ledvenem Delu Hrbtenice: Pilotska Študija. Kinesiol Slov 2011;17:25–37.
- [26] Suni J, Rinne M, Natri A, Statistisian MP, Parkkari J, Alaranta H. Control of the lumbar neutral zone decreases low back pain and improves self-evaluated work ability: a 12-month randomized controlled study. Spine (Phila Pa 1976) 2006;31:E611-20.

 doi:10.1097/01.brs.0000231701.76452.05.
- [27] You JH, Kim S-Y, Oh D-W, Chon S-C. The effect of a novel core stabilization technique on managing patients with chronic low back pain: a randomized, controlled, experimenter-blinded study. Clin Rehabil 2014;28:460–9. doi:10.1177/0269215513506231.
- [28] Gladwell V, Head S, Haggar M, Beneke R. Does a Program of Pilates Improve Chronic Non-Specifi c Low Back Pain? J Sport Rehabil 2006;15:338–50.
- [29] Kuukkanen T, Mälkiä E. Effects of a three-month therapeutic exercise programme on flexibility in subjects with low back pain. Physiother Res Int 2000;5:46–61.
- [30] Masharawi Y, Nadaf N. The effect of non-weight bearing group-exercising on females with non-specific chronic low back pain: a randomized single blind controlled pilot study. J Back Musculoskelet Rehabil 2013;26:353–9. doi:10.3233/BMR-130391.
- [31] Ohtsuki K. A 3-month Follow-up Study of the Long-term Effects of Direct Stretching of the Tensor Fasciae Latae Muscle in Patients with Acute Lumbago Using a Single-case Design. J Phys Ther Sci 2014;26:755–8. doi:10.1589/jpts.26.755.
- [32] Rackwitz B, de Bie R, Limm H, von Garnier K, Ewert T, Stucki G. Segmental stabilizing exercises

- and low back pain. What is the evidence? A systematic review of randomized controlled trials. Clin Rehabil 2006;20:553–67. doi:10.1191/0269215506cr977oa.
- [33] Hayden JA, van Tulder MW, Malmivaara A, Koes BW. Exercise therapy for treatment of non-specific low back pain. Cochrane Database Syst Rev 2005:CD000335.

 doi:10.1002/14651858.CD000335.pub2.
- [34] Oldervoll LM, Rø M, Zwart JA, Svebak S. Comparison of two physical exercise programs for the early intervention of pain in the neck, shoulders and lower back in female hospital staff. J Rehabil Med 2001;33:156–61.
- [35] Burton AK, Balagué F, Cardon G, Eriksen HR, Henrotin Y, Lahad A, et al. Chapter 2. European guidelines for prevention in low back pain: November 2004. Eur Spine J 2006;15 Suppl 2:S136-68. doi:10.1007/s00586-006-1070-3.
- [36] O'Sullivan P. Diagnosis and classification of chronic low back pain disorders: maladaptive movement and motor control impairments as underlying mechanism. Man Ther 2005;10:242–55. doi:10.1016/j.math.2005.07.001.
- [37] Hurwitz EL, Morgenstern H, Chiao C. Effects of recreational physical activity and back exercises on low back pain and psychological distress: findings from the UCLA Low Back Pain Study. Am J Public Health 2005;95:1817–24. doi:10.2105/AJPH.2004.052993.
- [38] Smeets RJ, Severens JL, Beelen S, Vlaeyen JW, Knottnerus JA. More is not always better: cost-effectiveness analysis of combined, single behavioral and single physical rehabilitation programs for chronic low back pain. Eur J Pain 2009;13:71–81.

 doi:10.1016/j.ejpain.2008.02.008.
- [39] Bloxham S, Barter P, Scragg S, Peers C, Jane B, Layden J. Person-Centrerd physical Activity for Patients with Low Back Pain: Piloting Service Delivery, Health Care 2016, 4 (28)

- [40] Monticone M, Baiardi P, Vanti C, Ferrari S, Pillastrini P, Mugnai R, Foti C. Responsiveness of the Oswestry Disability Index and the Roland Morris Disability Questionnaire in Italian subjects with sub-acute and chronic low back pain. European Spine Journal 2012, 21(1): 122-129
- [41] Davidson M, Keating JL. A Comparison of Five Low Back Disability Questionnaires: Reliability and Responsiveness. Phys Ther 2002;82:8–24.
- [42] Wittink H, Michel TH, Sukiennik A, Gascon C, Rogers W. The association of pain with aerobic fitness in patients with chronic low back pain. Arch Phys Med Rehabil 2002;83:1467–71.
- [43] van der Velde G, Mierau D. The effect of exercise on percentile rank aerobic capacity, pain, and self-rated disability in patients with chronic low-back pain: a retrospective chart review.

 Arch Phys Med Rehabil 2000;81:1457–63. doi:10.1053/apmr.2000.9629.

		Table 1: Summary of programme content							
	Theme	Activity 1	Activity 2	Activity 3	Activity 4	Activity 5	Activity 6	Activity 7	Activity 8
Week One	Introduction & Baseline	Introduction to the programme; Administration	Core activation & posture; chair based warm-up /mobility	Chester step test or alternative & education	Body composition assessment & education	Core flexion extension endurance & education	Flexibility and cool down & education	Individualized exercise therapy and rehabilitation Personalised goal setting	Social drinks tea/coffee
Week Two	Motion patterns and core activation	Small group discussion of daily diary, pedometers.	Chair based warm-up; sit to stands; calf raises; balance work; glut activation	Back saving motion patterns; hip hinge in context of daily tasks; explore neutral spine	Outside walk focusing on technique, pace, core activation and posture	Introduction to Nordic Walking focusing on co- ordination	Core strengthening; introduction to bird- dog, back saver sit up and side-plank	Individualized exercise therapy and rehabilitation Personalised goal setting	Social drinks tea/coffee
Week Three	Aerobic Fitness	Small group discussion of daily diary, pedometers. Larger group sharing as appropriate	Relaxation techniques: Lifestyle integration of learnt skills	Induction to fitness gym and aerobic equipment & education	Explore aerobic equipment; 5-8 minutes on up to 4 different ergometers	Progressions of bird- dog, back saver sit up and side-plank; glut max and med strengthening	Flexibility of major muscle groups; Review of achievements since starting the programme	Individualized exercise therapy and rehabilitation Personalised goal setting	Social drinks tea/coffee
Week Four	Muscular Strength and Endurance	Small group discussion of daily diary, pedometers. Larger group sharing as appropriate. Larger group sharing as appropriate	Introduction to resistance bands for home use	Nutrition and healthy food discussion. Food diary task	Aerobic warm up – patient led based on learnt exercise principles & increased self- efficacy	Introduction to resistance equipment in the fitness gym & education	Patient led core and flexibility exercises. Trouble shooting and adaptations	Individualized exercise therapy and rehabilitation Personalised goal setting	Social drinks tea/coffee
Week Five	Free flow: Water, land & Exergaming	Small group discussion of daily diary, pedometers. Larger group sharing as appropriate	Analysis of food diaries and group comments / observations	Aqua aerobics or land based options: Exercise gaming; aerobic exercise; Pilates; Nordic walking; Resistance exercise; fitness suite; flexibility; Floor based exercises (bird-dog, back saver sit up and side-plank; glut max and med strengthening)		Discussion around exit programme options. Barriers to exercise	Individualized exercise therapy and rehabilitation Personalised goal setting.	Social drinks tea/coffee	
Week Six	Summary & retest	Small group discussion of daily diary, pedometers. Larger group sharing as appropriate	Retest baselines measur Chester step test; Body composition assess Core flexion extension; Questionnaires;	ster step test; y composition assessment; eflexion extension; rehabilitation rehabilitation			therapy and	Café Group discussion Programme reflections Finish	

Table 2: Body composition

Measure	Pre-Programme (a)	Post-Programme (b)	6 month (c)	% Change
	(n-181)	(n = 177)	(n=53)	(Pre - 6 month)
Total Mass (kg)	84.2 (21.5)	83.4 (22.0)	83.6 (19.9)	-0.7
Body Fat Percentage (%)	34.2 (8.3)	33.8 (8.7) °	32.9 (8.7) b	-3.8
Lean Mass (kg)	54.3 (12.7)	54.3 (11.7)	54.8 (11.1)	+0.9
BMI	30.5 (7.0)	30.3 (7.0) a	30.4 (6.9)	-0.7

 $[\]overline{^{a,b,c}}$ Denotes statistical significance p<0.05

Table 3: Performance measures of physical fitness and disability

Measure	Pre Programme (n = 181)	Post-Programme (n=177)	6 month (n=53)	% Change (Pre-6mth)
Back Extension (s)	35.9 (38.7)	49.3 (40.9)*	50.2 (47.8)	40
Back Flexion (s)	61.4 (43.1)	71.9 (41.0)*	70.4 (48.3)	15
Grip Strength – Left (kg)	29.9 (11.4)	31.5 (12.1) *	30.3 (11.0)	1.3
Grip Strength – Right (kg)	31.4 (11.5)	32.4 (11.9)	31.9 (11.0)	1.6
Predicted Aerobic Fitness (mL·kg·min)	27.5 (15.3)	31.1 (14.5) *	32.6 (12.5)	13
Pedometer Count	4570 (2403)	7163 (9825)*	n/a	57
Oswestry Disability Rating	30.9 (19.3)	25.4 (19.1) *	27.6 (19.6)	-11

^{*} Denotes significantly different from pre-programme p<0.05